
To appear in Proc., IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, Dec. 7-9, 1994 1

The Generalized Railroad Crossing: A Case Study in Formal

Veri�cation of Real-Time Systems

Constance Heitmeyer� Nancy Lynchy

Abstract

A new solution to the Generalized Railroad Cross-
ing problem, based on timed automata, invariants and
simulation mappings, is presented and evaluated. The
solution shows formally the correspondence between
four system descriptions: an axiomatic speci�cation,
an operational speci�cation, a discrete system imple-
mentation, and a system implementation that works
with a continuous gate model.

1 Introduction
Recently, one of us (Heitmeyer) de�ned a bench-

mark problem to compare the many formal meth-
ods that exist for specifying, designing, and analyzing
real-time systems and to better understand the util-
ity of the methods for developing practical systems.
The problem, which is called the Generalized Railroad
(GRC) Crossing [8], is as follows:

The system to be developed operates a gate at a railroad cross-
ing. The railroad crossing I lies in a region of interest R, i.e.,

I � R. A set of trains travel through R on multiple tracks in
both directions. A sensor system determines when each train

enters and exits region R. To describe the system formally, we
de�ne a gate function g(t) 2 [0;90], where g(t) = 0 means the
gate is down and g(t) = 90 means the gate is up. We de�ne a

set f�ig of occupancy intervals, where each occupancy interval
is a time interval during which one or more trains are in I. The

ith occupancy interval is represented as �i = [�i; �i], where �i
is the time of the ith entry of a train into the crossing when no

other train is in the crossing and �i is the �rst time since �i that
no train is in the crossing (i.e., the train that entered at �i has
exited as have any trains that entered the crossing after �i).

Given two constants �1 and �2, �1 > 0; �2 > 0; the problem is
to develop a system to operate the crossing gate that satis�es

the following two properties:

Safety Property: t 2 [i�i ) g(t) = 0 (The gate is down

during all occupancy intervals.)

Utility Property: t 62 [i[�i � �1; �i + �2]) g(t) = 90 (The

gate is up when no train is in the crossing.)

To solve the GRC problem, real-time researchers
have applied a variety of formal methods, including
process algebraic [9, 3, 1], event-based [10], and logic-
based approaches [19, 11]. They have also used various
mechanical proof systems, including PVS [18], EVES

�Code 5546, Naval Research Laboratory, Washington,

DC 20375.
yLaboratory for Computer Science, Massachusetts Institute

of Technology, Cambridge, MA 02139. Supportedby NSF grant

9225124-CCR, ONR contract N00014-91-J-1046, AFOSR con-
tract F49620-94-1-0199, and ARPA contract N00014-92-J-4033.

[11], and FDR [2], to formally analyze and verify their
solutions. Reference [5] describes three early e�orts to
solve the GRC problem.

This paper describes a new solution of the GRC
based on the Lynch-Vaandrager timed automaton
model [16, 15], using invariant and simulation map-
ping techniques [12, 15, 14]. To develop the solution,
a \formal methods expert" (Lynch) and an \applica-
tions expert" (Heitmeyer) worked closely together to
re�ne the GRC problem statement and to design and
verify an implementation.

Our close collaboration was in sharp contrast to
the limited interaction between the Naval Research
Laboratory (NRL) group that distributed the GRC
problem and the formal methods groups that devel-
oped earlier solutions. In the earlier work, the NRL
group limited interaction both to encourage original
solutions and to prevent some groups from having
more information and thus unfair advantage over other
groups. While these early e�orts produced a vari-
ety of solutions and many insights into the relative
strengths and weaknesses of the di�erent formalisms,
they su�ered from two limitations. First, because the
original problem statement was somewhat ambiguous,
each group solved a slightly di�erent problem, which
caused di�culties in comparing the solutions. Sec-
ond, the limited interaction meant that de�ciencies in
the GRC problem statement went uncorrected. Our
collaboration allowed us to quickly identify and cor-
rect these de�ciencies. It also led us to represent the
problem and its solution in a form that is both under-
standable to applications experts and usable by formal
methods experts for veri�cation.

Section 2 describes our approach. Sections 3 and 4
present our highest-level problem speci�cation, in-
tended to be understood by applications experts, and
a second operational speci�cation, intended to be use-
ful in formal veri�cation. Sections 5, 6 and 7 con-
tain our system implementation, the main correctness
proof, and an extension of our solution to more realis-
tic, continuous models. Section 8 evaluates our solu-
tion and method. An appendix provides background
on our formal methods. The details of the proofs are
available in the full version of the paper [6].

2 Our Approach
Formal Methods for Real-Time Systems. Ap-
plying formal methods to real-time systems involves
three steps: system requirements speci�cation, design
of an implementation, and veri�cation that the im-
plementation satis�es the speci�cation. This process



has feedback loops. Once speci�ed, the requirements
must be revised when later steps expose omissions and
errors. The same is true of the designed implementa-
tion.

All three steps require close collaboration between
a formal methods expert and an applications expert.
The role of the formal methods expert is to produce
formal descriptions of both the system requirements
and the selected implementation and to prove formally
that the latter satis�es the former. The role of the ap-
plications expert is to work closely with the formal
methods expert to identify the \real" requirements
and to ensure that the speci�ed implementation is ac-
ceptable. In our collaboration, much of the dialogue
focused on the system requirements. Once the require-
ments speci�cation was acceptable, de�ning and ver-
ifying an implementation, while labor-intensive and
time-consuming, was relatively straightforward.

A system requirements speci�cation describes all
acceptable system implementations [7]. It has two
parts: (1) A set of formal models describing the com-
puter system at an abstract level, the environment
(here, the trains and the gate), and the interface be-
tween them. (2) Formal statements of the properties
that the system must satisfy.

In developing the GRC solution, we applied the fol-
lowing seven software engineering principles. The �rst
�ve concern the requirements speci�cation, the sixth
concerns the implementation and its veri�cation, and
the seventh is applicable to all three steps.

1. Avoid underspecifying system requirements. The
original problem statement lacked necessary in-
formation about the various constants. For ex-
ample, the statement did not constrain the con-
stant �1. A simple analysis shows that we should
assume that �1 > down+ �2� �1, where �2 is the
maximum time and �1 the minimum time that a
train requires to travel from entry into R to the
crossing and down is the maximum time needed
to lower the gate.

2. Avoid overspecifying system requirements. For
example, while the function g is an acceptable
gate model, the GRC problem can be solved us-
ing a simpler, discrete model|one that represents
the gate in one of four states|up, going-down,
down, and going-up. Our solution uses the sim-
pler model, but we show in Section 7 how to ex-
tend our results to the original gate model.

For another example, the Utility Property stated
above does not rule out solutions in which the
last train leaves the crossing at time t but within
the interval [t; t + �2] the gate goes �rst up and
then down rapidly before the gate is raised for the
second (and �nal) time. Such solutions, though
not to be encouraged, should not be excluded.
The essential system properties are that the gate
must be down when a train is in the crossing,
and that the gate must be up during the speci�ed
intervals when no train is in the vicinity. During
other times, we do not care what the gate does.

3. Make sure the speci�ed system behavior is rea-
sonable. For example, suppose a train exits the
crossing at time t and another train is scheduled
to enter the crossing by time t + up + down.
Then there is insu�cient time for even one car to
travel through the crossing, and thus the Utility
Property fails to achieve its practical purpose. To
rule out such useless activity, we modify the orig-
inal problem statement to only require the gate
to be raised if su�cient time, �, exists for at least
one car to travel through the crossing.

4. Specify the system requirements as axioms rather
than operationally. In the original problem state-
ment, both the Safety Property and the Utility
Property are expressed as axioms. Each axiom
describes a relationship that must hold between
the two components of the system environment,
namely, the trains and the crossing gate. Thus
the required system properties are properties of
the environment. Neither axiom mentions the
computer system. Also, the two axioms are stated
independently, making it easy to modify the in-
dividual properties.

In the present study, we initially described the re-
quirements operationally. This operational speci-
�cation incorporated both the Safety and Utility
Properties into a single automaton, thus losing
the advantage of independence. Also, the spec-
i�cation was stronger than the original formula-
tion, describing some aspects of what the com-
puter system should do rather than just describ-
ing properties that the system needed to guaran-
tee in the environment. Finally, the operational
style of the speci�cation was harder for applica-
tions experts to understand. Our �nal version of
the speci�cation, which appears in Section 3, is
axiomatic. Like the original formulation, it de-
scribes the two properties as independent axioms
about the environment.

5. Provide a second, operational speci�cation plus a
formal proof that the operational speci�cation im-
plements the axiomatic speci�cation. Although
it is desirable to start with an axiomatic spec-
i�cation, the types of proofs we do rest on op-
erational, automaton versions of the speci�cation
and implementation. Therefore, we present a sec-
ond requirements speci�cation in terms of timed
automata and prove that the operational require-
ments speci�cation implements the original ax-
iomatic speci�cation.

As in many applications of formal methods, we
initially neglected to provide a formal proof of
the correspondence between the original prob-
lem statement and the reformulation within our
framework. Without such a proof, there is no
assurance that the properties satis�ed by the sys-
tem implementation are the ones that are really
required. In our case, while it was immediately
obvious that the statement of the Safety Property
in our operational speci�cation was equivalent to
the original statement of the Safety Property, the

2



correspondence between the two versions of the
Utility Property was not so clear.

6. Provide a formal model for the implementation
and a proof that it implements the operational
speci�cation. The implementation should be de-
scribed using the same model that is used for the
operational speci�cation, or at least one that is
compatible. The proof that the implementation
meets the speci�cation can be done using a vari-
ety of methods, either by hand, as in this paper,
or with computer assistance.

7. Express the system requirements speci�cation, the
implementation, and the formal proofs so that
they are understandable to applications experts. If
the requirements speci�cation and the description
of the implementation are di�cult to understand,
the applications expert cannot be con�dent that
the right requirements have been speci�ed and
that the implementation is acceptable. The same
holds for the formal proofs: the applications ex-
pert must be able to understand the proofs. This
gives him/her a deep understanding of how and
why the system works and how future changes
are likely to a�ect system behavior. To increase
their understandability, both the formal speci�ca-
tions and the proofs should be based on standard
models such as automaton models, standard no-
tations, and standard proof techniques such as in-
variants and simulation mappings. To the extent
feasible, applications experts should not be re-
quired to learn new notations or proof techniques.

The Formal Framework. The formal method we
used to specify the GRC problem and to develop and
verify a solution represents both the computer system
and the system environment as timed automata, ac-
cording to the de�nitions of Lynch and Vaandrager
[16, 15]. A timed automaton is a very general au-
tomaton, i.e., a labeled transition system. It is not
�nite-state: for example, the state can contain real-
valued information, such as the current time or the
position of a train or crossing gate. This makes timed
automata suitable for modeling not only computer sys-
tems but also real-world entities such as trains and
gates. We base our work directly on an automaton
model rather than on any particular speci�cation lan-
guage, programming language, or proof system, in or-
der to obtain the greatest exibility in selecting spec-
i�cation and proof methods. The formal de�nition of
a timed automaton appears in the Appendix.

The timed automaton model supports description
of systems as collections of timed automata, interact-
ing by means of common actions. In our example,
we de�ne separate timed automata for the trains, the
gate, and the computer system; the common actions
are sensors reporting the arrival of trains and actua-
tors controlling the raising and lowering of the gate.

An important special case of the model, describ-
able in a particularly simple way, is the MMT au-
tomaton model [17], developed by Merritt, Modugno
and Tuttle. An MMT automaton consists of a col-
lection of \tasks" (i.e., \processes") sharing common

data, where each task has an upper bound and a lower
bound on the time between its events. This special
case is su�cient for describing several of our compo-
nents, in particular, the trains and the discrete version
of the gate. Our other components, e.g., the computer
system, cannot be expressed in the MMT style, so we
describe them directly in terms of the general model.

Applying Formal Methods to GRC. Our solu-
tion contains four system descriptions: AxSpec, the
axiomatic requirements speci�cation; OpSpec, the op-
erational requirements speci�cation; SystImpl, the dis-
crete system implementation; and SystImpl 0, a sys-
tem implementation with a continuous gate model.
Figure 1 illustrates the four descriptions and how they
are related.

The top-level requirements speci�cation AxSpec
contains timed automata describing the computer sys-
tem and its environment (the trains and gate) and ax-
ioms expressing the Safety and Utility Properties. The
Safety Property states that if a train is in the crossing,
the gate must be down. The Utility Property states
that the gate is up unless a train is in the vicinity.
Formally, these axioms are properties added to the
composition of three timed automata: Trains, Gate,
and CompSpec, a trivial speci�cation of the computer
system. Figure 2 illustrates AxSpec.

Next, because it is easier to use in proving correct-
ness, we produce a second, more operational require-
ments speci�cation in the form of a timed automaton
OpSpec. We show that OpSpec implements AxSpec.

Next, we describe our computer system implemen-
tation as a timed automaton CompImpl. Correctness
means that CompImpl, when it interacts with Trains
and Gate, guarantees the Safety and Utility Proper-
ties. To show this, we prove that SysImpl, the com-
position of CompImpl, Trains and Gate, provides the
same view to the environment components, Trains and
Gate, as the operational speci�cation OpSpec. This
part of the proof follows well-established, stylized in-
variant and simulation mapping methods, which is
why we moved from the axiomatic style of speci�ca-
tion to the operational style. All these proofs can be
veri�ed using current mechanical proof technology.

In both speci�cation automata, AxSpec and
OpSpec, and in the implementation automaton
SysImpl, time is built into the state. Time information
consists of the current time plus some deadline infor-

AxSpec
Trains

Safety

Gate

CompSpec

Utility

OpSpec

Trains

Gate

CompSpec

SystImpl
Trains

Gate

CompImpl

OpProps

SystImpl'

Trains

Gate'

CompImpl

OpPropsOpProps

Figure 1: The four system descriptions and how they
are related. In OpSpec, OpProps incorporates the
Safety and Utility properties into the automaton that
results from composing Trains, Gate, and CompSpec.

3



mation, such as the earliest and latest times that a
train that has entered R will actually enter the cross-
ing. The correctness proof proceeds by �rst proving by
induction some invariants about the reachable states
of SysImpl. The main work in the proof of the Safety
Property is done by means of these invariants. An
interesting feature of the proofs is that the invariants
involve time deadline information.

Next, we show a \simulationmapping" between the
states of SysImpl and OpSpec, again by induction; this
is enough to prove the Utility Property. Like the in-
variants, the simulations also involve time deadline in-
formation, in particular, they include inequalities be-
tween time deadlines.

Finally, we observe that our main proofs yield a
weaker result that what we really want. Namely,
we have worked with abstract, discrete models of the
trains and gate rather than with realistic models that
allow continuous behavior. And we have only shown
that the \admissible timed traces", i.e., the sequences
of externally visible actions, together with their times
of occurrence, are preserved, rather than all aspects of
the environment's behavior. We conclude by showing
that we have not lost any generality by proving the
weaker results. In particular, preservation of admis-
sible timed traces actually implies preservation of all
aspects of the environment's behavior. Further, the
results extend to SystImpl 0, a system implementation
with a more realistic environment model. Both ex-
tensions are obtained as corollaries of the results for
admissible timed traces of the discrete model, using
general results about composition of timed automata.

3 Axiomatic Speci�cation
We �rst de�ne two timed automata, Trains and

Gate, which are abstract representations of the trains
and the gate. These two components do not in-
teract directly. We then de�ne a trivial automa-
ton CompSpec, which interacts with both Trains and
Gate via actions representing sensors and actuators.
CompSpec describes nothing more than the computer
system's interface with the environment. AxSpec is ob-
tained by composing these three automata and then
imposing the Safety and Utility Properties on the com-
position; see Figure 2. Formally, the two properties
are restrictions on the executions of the composition.
The Safety Property is just a restriction on the states
that occur in the execution, while the Utility Property
is a more complex temporal condition.

Trains GateCompSpec

enterR(r)enterI(r)

exit(r)

raise

lower

AxSpec

Safety

Utility

Figure 2: AxSpec is the composition of Trains, Gate,
and CompSpec, constrained by the Safety and Utility
properties.

Parameters and Other Notation. We use the no-
tation r, r0, etc. to denote trains, I to denote the rail-
road crossing, R to denote the region from where a
train passes a sensor until it exits the crossing, and P
to denote the portion of R prior to the crossing. We
de�ne some positive real-valued constants:

� �1, a lower bound on the time from when a train enters R
until it reaches I.

� �2, an upper bound on the time from when a train enters
R until it reaches I.

� �, the minimum useful time for the gate to be up. (For
example, this might represent the minimum time for a car
to pass through the crossing safely.)

� down, an upper bound on the time to lower the gate
completely.

� up, an upper bound on the time to raise the gate com-
pletely.

� �1, an upper bound on the time from the start of lowering
the gate until some train is in I.

� �2, an upper bound on the time from when the last train
leaves I until the gate is up (unless the raising is inter-

rupted by another train getting \close" to I).

� �, an arbitrarily small constant used to take care of some

technical race conditions.1

We need some restrictions on the values of the var-
ious constants:

1. �1 � �2.

2. �1 > 
down

. (The time from when a train arrives until it

reaches the crossing is su�ciently large to allow the gate
to be lowered.)

3. �1 � 
down

+ � + �2 � �1. (The time allowed between
the start of lowering the gate and some train reaching I is

su�cient to allow the gate to be lowered in time for the
fastest train, and then to accommodate the slowest train.

The time down is needed to lower the gate in time for the
fastest train, but the slowest train could take an additional

time �2 � �1. The � is a technicality.)

4. �2 � up. (The time allowed to raise the gate is su�cient.)

Trains. We model the Trains component as an
MMT automaton with no input or internal actions,
and three types of outputs, enterR(r), enterI(r), and
exit(r), for each train r. The state consists of a status
component for each train, just saying where it is.

State:

for each train r:

r:status 2 fnot-here; P; Ig, initially not-here

The state transitions are described by specifying
the \preconditions" under which each action can occur
and the \e�ect" of each action. s denotes the state
before the event occurs and s0 the state afterwards.

Transitions:

enterR(r)
Precondition:

s:r:status= not-here

E�ect:
s0:r:status = P

1These arise because the model allows more than one event
to happen at the same real time.

4



enterI(r)
Precondition:

s:r:status = P

E�ect:
s0:r:status = I

exit(r)
Precondition:

s:r:status = I

E�ect:
s0:r:status = not-here

In this automaton (and for all other MMT au-
tomata in this paper), we make each non-input action
a task by itself. We only specify trivial bounds (that is,
[0;1]) for the enterR(r) and exit(r) actions. For each
enterI(r) action, we use bounds [�1; �2]. This means
that from the time when any train r has reached R, it
is at least time �1 and at most time �2 until the train
reaches I.

We use the general construction described in the
Appendix to convert this automaton to a timed au-
tomaton. This construction involves adding some
components to the state { a current time component
now, and �rst and last components for each task, giv-
ing the earliest and latest times at which an action
of that task can occur once the task is enabled. The
transition relation is augmented with conditions to en-
force the bound assumptions; that is, an event cannot
happen before its �rst time, and time cannot pass be-
yond any last time. In this case, only the state com-
ponents now and �rst(enterI(r)) and last(enterI(r))
for each r contain nontrivial information, so we ignore
the other cases. Applying this construction yields the
timed automaton with the same actions and the fol-
lowing states and transitions.

State:

now, a nonnegative real, initially 0

for each train r:
r:status 2 fnot-here; P; Ig, initially not-here

�rst(enterI(r)), a nonnegative real, initially 0

last(enterI(r)), a nonnegative real or 1, initially1

Transitions:

enterR(r)
Precondition:

s:r:status = not-here

E�ect:

s0:r:status = P

s0:�rst(enterI(r)) = now+ �1
s0:last(enterI(r)) = now+ �2

enterI(r)
Precondition:

s:r:status = P

now � s:�rst(enterI(r))
E�ect:

s0:r:status = I

s0:�rst(enterI(r)) = 0
s0:last(enterI(r)) =1

exit(r)
Precondition:

s:r:status = I

E�ect:
s0:r:status = not-here

�(�t)
Precondition:

for all r, s:now+�t � s:last(enterI(r))
E�ect:

s0:now = s:now+�t

Gate. We model the gate as another MMT automa-
ton, this one with inputs lower and raise and outputs
down and up. The time bounds are down: [0; down],

and up: [0; up], where up and down are upper
bounds on the time required for the gate to be raised
and lowered. To build time into the state, the state
components now, last(up), and last(down) are added
to produce the following states and transitions.

State:

status 2 fup; down; going-up; going-downg, initially up

now, a nonnegative real, initially 0
last(down), a nonnegative real or 1, initially1

last(up), a nonnegative real or 1, initially1

Transitions:

lower

E�ect:

if s:status 2 fup; going-upg then
s0:status = going-down

s0:last(down) = now+ 
down

s0:last(up) =1

raise

E�ect:
if s:status 2 fdown; going-downg then

s0:status = going-up

s0:last(up) = now+ up
s0:last(down) = 1

down

Precondition:
s:status = going-down

E�ect:

s0:status = down

s0:last(down) =1

up

Precondition:

s:status = going-up

E�ect:
s0:status = up

s0:last(up) =1

�(�t)
Precondition:

s:now+ �t � s:last(up)

s:now+ �t � s:last(down)
E�ect:

s0:now = s:now+�t

CompSpec. We model the computer system inter-
face as a trivial MMT automaton CompSpec with in-
puts enterR(r) and exit(r) for each train r and outputs
lower and raise. CompSpec receives sensor informa-
tion when a train arrives in the region R and when it
leaves the crossing I. It does not have an input ac-
tion enterI(r); this expresses the assumption that no

5



sensor informs the system when a train actually en-
ters the crossing. CompSpec has just a single state.
Inputs and outputs are always enabled and cause no
state change. There are no timing requirements.

Transitions:

enterR(r)
E�ect:

none

lower

Precondition:
true

E�ect:
none

exit(r)
E�ect:

none

raise

Precondition:
true

E�ect:
none

AxSpec. To get the full speci�cation, the three
MMT automata given above, Trains, Gate and
CompSpec, are composed yielding a new MMT au-
tomaton. We then add constraints to express the cor-
rectness properties in which we are interested. For-
mally, these constraints are axioms about an admissi-
ble timed execution � of the composition automaton:

1. Safety Property

All the states in � satisfy the following condition:

If Trains:r:status = I for any r, then Gate:status = down.

2. Utility Property

If s is a state in � with s:Gate:status 6= up, then at least
one of the following conditions holds.

(a) There exists s0 preceding (or equal to) s in � with
s0:Trains:r:status = I for some r and s0:now �

s:now� �2.

(b) There exists s0 following (or equal to) s in � with
s0:Trains:r:status = I for some r and s0:now �

s:now+ �1.

(c) There exist two states s0 and s00 in �, with

s0 preceding or equal to s, s00 following or
equal to s, s0:Trains:r:status = I for some r,

s00:Trains:r:status = I for some r, and s00:now �

s0:now � �1 + �2 + �.

The Safety and Utility properties are stated inde-
pendently. The Safety Property is an assertion about
all states reached in �, saying that each satis�es the
critical safety property. In contrast, the Utility Prop-
erty is a temporal property with a somewhat more
complicated structure, which says that if the gate is
not up, then either there is a recent preceding state
or an imminent following state in which a train is in
I. The third condition takes care of the special case
where there is both a recent state and an imminent
state in which some train is in I; although these states
are not quite as recent or imminent as required by the
�rst two cases, there is insu�cient time for a car to
pass through the crossing.

4 Operational Spec
UnlikeAxSpec, which consists of a timed automaton

together with some axioms that restrict the automa-
ton's executions, the operational speci�cation OpSpec
is simply a timed automaton { all required properties
are built into the automaton itself as restrictions on

the state set and on the actions that are permitted to
occur. As a result, OpSpec is probably harder for an
application expert to understand than AxSpec. But it
is easier to use in proofs (at least for the style of ver-
i�cation we are using). Thus we regard OpSpec as an
intermediate speci�cation rather than a true problem
speci�cation; we only require that OpSpec implement
AxSpec, not necessarily vice versa, and that all imple-
mentations satisfy OpSpec.

The two speci�cations are also di�erent in another
respect: while AxSpec preserves the independence of
the Safety and Utility Properties, OpSpec does not.
When a collection of separate properties are speci�ed
by an automaton, the properties usually become in-
tertwined.

To obtain OpSpec, we �rst compose Trains, Gate,
and CompSpec, and then incorporate the Safety and
Utility Properties into the automaton itself. Formally,
the modi�ed automaton is obtained from the compo-
sition by restricting it to a subset of the state set, then
adding some additional state components, and �nally
modifying the de�nitions of the steps to describe their
dependence on and their e�ects on the new state com-
ponents. Although the composition of the three com-
ponent automata is an MMT automaton, the modi�ed
version is not { it is a timed automaton.

First, to express the Safety Property, we restrict
the states to be those states of the composition that
satisfy the following invariant: \If Trains:r:status = I
for any r, then Gate:status = down."

Second, the time-bound restrictions expressed by
the Utility Property are encoded as restrictions on the
steps. The strategy is similar to that used to encode
MMT time bound restrictions into the steps of a timed
automaton { it involves adding explicit deadline com-
ponents. We describe the modi�cations in two pieces:

1. The time from when the gate starts going down
until some train enters I is bounded by �1. To express
this restriction formally, we add to the state of the
composed system a new deadline last1, representing
the latest time in the future that a train is guaranteed
to enter I. Initially, this is set to 1, meaning that
there is no such scheduled requirement. To add this
new component to OpSpec, we include the following
new e�ects in two of the actions:

Transitions:

lower

E�ect:
if s:Gate:status 2 fup; going-upg

and s:last1 =1 then
s0:last1 = now+ �1

enterI(r)

E�ect:
s0:last1 =1

Also added is a new precondition: the time-passage
action cannot cause time to pass beyond last1. This
means that whenever the gate starts moving down,
some train must enter I within time �1. The new e�ect
being added to the lower action just \schedules" the
arrival of a train in I.

6



2. From when the crossing becomes empty, either
the time until the gate is up is bounded by �2 or else
the time until a train is in I is bounded by �2+ �+ �1.
Again, we express the condition by adding deadlines,
only this time the situation is trickier since two al-
ternative bounds exist rather than just one. We add
two new components, last2(up) and last2(I), both ini-
tially1. The �rst represents a milestone to be noted
{ whether the gate reaches the up position by the des-
ignated time { rather than an actual deadline. In con-
trast, the second represents a real deadline { a time by
which a new train must enter I unless the gate reached
the up position by the milestone time last2(up). To
include these new components in OpSpec, we add the
following e�ects to three of the actions:

Transitions:

exit(r)
E�ect:

if s:Trains:r0:status 6= I for all r0 6= r then
s0:last2(up) = now+ �2
s0:last2(I) = now+ �2 + � + �1

up

E�ect:

if now � s:last2(up) then
s0:last2(up) =1

s0:last2(I) =1

enterI(r)

E�ect:
s0:last2(up) =1

s0:last2(I) =1

Also, as with last1, an implicit precondition is
placed on the time-passage action, saying that time
cannot pass beyond last2(I). But because last2(up) is
just a milestone to be recorded, no such limitation is
imposed for time passing beyond last2(up).

We show that OpSpec implements AxSpec in the
following sense:

Lemma 4.1 For any admissible timed execution � of
OpSpec, there is an admissible timed execution �0 of
AxSpec such that �0jTrains�Gate = �jTrains�Gate.
(This is the same as saying that � satis�es the two
properties given explicitly for AxSpec.)

Note that the relationship between OpSpec and
AxSpec is only one-way: there are admissible timed ex-
ecutions of AxSpec that have no executions of OpSpec
yielding the same projection. Consider, for example,
the following example. Suppose that after I becomes
empty, the system does a very rapid raise, lower, raise.
These could conceivably all happen within time �2 af-
ter the previous time there was a train in I, which
would make this \wa�ing" behavior legal according
to AxSpec. However, when this lower occurs, there is
no following entry of a train into I, which means that
this does not satisfy OpSpec.

5 Implementation
To describe our implementation SysImpl, we use

the same Trains and Gate automata but replace the

CompSpec component in OpSpec and AxSpec with a
new component CompImpl, a computer system imple-
mentation. CompImpl is a timed automaton with the
same interface as CompSpec. It keeps track of the
trains in R together with the earliest possible time
that each might enter I. (This time could be in the
past.) It also keeps track of the latest operation that
it has performed on the gate and the current time.

State:

for each train r:
r:status 2 fnot-here; Rg, initially not-here

r:sched-time, a nonneg. real number or 1, initially1
gate-status 2 fup; downg, initially up

now, initially 0

Transitions:

enterR(r)
E�ect:

s0:r:status = R

s0:r:sched-time = now+ �1

exit(r)

E�ect:
s0:r:status = not-here

s0:r:sched-time = 1

lower

Precondition:

s:gate-status = up

9r : s:r:sched-time � now+ 
down

+ �

E�ect:
s0:gate-status = down

raise

Precondition:

s:gate-status = down

6 9r : s:r:sched-time � now+ up + � + 
down

E�ect:
s0:gate-status = up

�(�t)
Precondition:

t = s:now+ �t

if s:gate-status = up then
t < s:r:sched-time� 

down
for all r

if s:gate-status = down then
9r : s:r:sched-time � s:now+ up + �+ 

down
E�ect:

s0:now = t

Observe that the fact that CompImpl:gate-status =
up does not mean that Gate:status = up but just
that Gate:status 2 fup; going-upg. A similar remark
holds for CompImpl:gate-status = down. Note that
r:sched-time keeps track of the earliest time that train
r might enter I. The system lowers the gate if the gate
is currently up (or going up) and some train might
soon arrive in I. Here \soon" means by the time the
computer system can lower the gate plus a little bit
more { this is where we consider the technical race
condition mentioned earlier. The system raises the
gate if the gate is currently down (or going down)
and no train can soon arrive in I. This time, \soon"
means by the time the gate can be raised plus the
time for a car to pass through the crossing plus the

7



time for the system to lower the gate. The system
allows time to pass subject to two conditions. First,
if gate-status = up, then real time is not allowed to
reach a time at which it is necessary to lower the gate.
Second, if gate-status = down and the gate should be
raised, then time cannot increase at all (until the gate
is raised).

The full system implementation, SysImpl, is just
the composition of the Trains, Gate and CompImpl
components.

6 Correctness Proof
The main correctness proof shows that every ad-

missible execution of SysImpl projects on the external
world like some admissible execution of OpSpec.

We �rst state a collection of invariants, leading to a
proof of the safety property. All are proved by induc-
tion on the length of an execution. The �rst invariant
says that if a train is in the region and the gate is
either up or going up, then the train must still be far
from the crossing.

Lemma 6.1 In all reachable states of SysImpl, if
Trains:r:status = P and Gate:status 2 fup; going-upg,
then Trains:�rst(enterI(r)) > now + down.

The second invariant says that if a train is nearing
I and the gate is going down, then the gate is nearing
the down position. In particular, the earliest time at
which the train might enter I is strictly after the latest
time at which the gate will be down.

Lemma 6.2 In all reachable states of SysImpl, if
Trains:r:status = P and Gate:status = going-down,
then Trains:�rst(enterI(r)) > Gate:last(down).

These invariants yield the main safety result:

Lemma 6.3 In all reachable states of SysImpl, if
Trains:r:status = I for any r, then Gate:status =
down.

To show the Utility Property, we present the simu-
lation mapping from SysImpl to OpSpec. Speci�cally,
if s and u are states of SysImpl and OpSpec, respec-
tively, then we de�ne s and u to be related by relation
f provided that:

1. u:now = s:now.

2. u:Trains = s:Trains.2

3. u:Gate = s:Gate.

4. u:last1 � minfs:Trains:last(enterI(r))g.

5. Either
u:last2(I) � minfs:Trains:last(enterI(r))g, or
u:last2(up) � now + up and the raise precondi-
tion holds in s, or
u:last2(up) � s:Gate:last(up) and s:Gate:status =
going-up.

2By this we mean that the entire state of the Trains automa-
ton, including the time components, is preserved.

The �rst three parts of the de�nition are self-
explanatory. The last two parts provide connections
between the time deadlines in the speci�cation and im-
plementation. In the typical style for this approach,
the connections are expressed as inequalities. The
fourth condition bounds the latest time for some train
to enter I, a bound mentioned in the speci�cation, in
terms of the actual time it could take in the imple-
mentation, namely, the minimum of the latest times
for all the trains in P . The �fth condition is slightly
more complicated { it bounds the time for either some
train to enter I or the gate to reach the up position.
There are two cases for the gate reaching the up posi-
tion { one in which the gate has not yet begun to rise
and the other in which it has.

Theorem 6.4 f is a simulation mapping from
SysImpl to OpSpec.

Proof: We show the three conditions required for a
simulation mapping, as de�ned in the Appendix.

Theorems 6.4 and A.1 together imply that all ad-
missible timed traces of SysImpl are admissible timed
traces of OpSpec. This is not quite what we need.
However, we can obtain the needed correspondence
between SysImpl and OpSpec as a corollary, using gen-
eral results about composition of timed automata:

Corollary 6.5 For any admissible timed execution �
of SysImpl, there is an admissible timed execution �0

of OpSpec such that �0jTrains � Gate = �jTrains �
Gate.

Putting this together with Lemma 4.1, we obtain
the main theorem:

Theorem 6.6 For any admissible timed execution �
of SysImpl, there is an admissible timed execution �0

of AxSpec such that �0jTrains � Gate = �jTrains �
Gate.

7 Realistic Models of the Real World
The models used above for the trains and gate are

rather abstract. An applications expert might prefer
more realistic models giving, for instance, exact or ap-
proximate positions for the trains and gate. However,
a formal methods expert would probably not want to
include such details, because they would complicate
the proofs. Fortunately, we can satisfy everyone.

For any real world component, it is possible to de-
�ne a pair of models, one abstract and one more real-
istic. The only constraint is that the realistic model
should be an \implementation" of the abstract model,
i.e., its set of admissible timed traces should be in-
cluded in that of the abstract model. All the di�cult
proofs are carried out using the abstract models, as
above. Then corollaries are given to extend the results
to the realistic models. This extension is based on gen-
eral results about composition of timed automata.

For example, we can de�ne a new type of gate com-
ponent, Gate0, similar to the Gate de�ned above, but
having a more detailed model of gate position. Gate0

8



is also a timed automaton. Fix any constant 0
down

,

0 � 0
down

� down. De�ne gd to be a function map-

ping [0; 0
down

] to [0; 90]. Function gd is de�ned so that

gd(0) = 90, gd(
0

down
) = 0, and gd is monotone non-

increasing and continuous. gd(t) gives the position of
the gate after it has been going down for time t. Simi-
larly, �x a constant 0up, 0 � 0up � up, and de�ne gu
to be a function mapping [0; 0up] to [0; 90]. Function

gu is de�ned so that gu(0) = 0, gu(
0
up) = 90, and gu

is monotone nondecreasing and continuous.
The actions of Gate0 are the same as for Gate. The

state is also the same, with the addition of one new
component pos 2 [0; 90] to represent the gate posi-
tion, initially 90. The lower and raise transitions are
the same as for Gate, except that 0

down
and 0up are

used in place of down and up; they are omitted be-
low. The up and down transitions contains new pre-
conditions stating that the correct position has been
reached. The time-passage transitions adjust pos.

Transitions:

down

Precondition:
s:status = going-down

s:pos = 0

E�ect:
s0:status = down

s0:last(down) =1

up

Precondition:

s:status = going-up

s:pos = 90

E�ect:
s0:status = up

s0:last(up) = 1

�(�t)
Precondition:

t = now+ �t

t � s:last(down)
t � s:last(up)

E�ect:
s0:now = t

if s:status = going-up then
s0:pos=maxfs:pos; gu(t�(s:last(up)�0up))g

elseif s:status = going-down then

s0:pos=minfs:pos; gd(t�(s:last(down)�0
down

))g

Thus, unlike the more abstract automata consid-
ered so far, Gate0 allows interesting state changes to
occur in conjunction with time-passage actions. Note
that Gate0 contains a rather arbitrary decision about
what happens if a lower event occurs when the gate is
in an intermediate position. It says that the gate stays
still for the initial time that it would take for the gate
to move down to its current position if it had started
from position 0. Alternative modeling choices would
also be possible. A similar remark holds for raise.

We relate the new gate model to the old one. See
the Appendix for the notation.

Lemma 7.1 attraces(Gate0) � attraces(Gate).

Now, let SysImpl 0 be the composition of Trains,
Gate0, and CompImpl, and let AxSpec0 be the compo-
sition ofTrains,Gate0, andCompSpec, with Safety and
Utility Properties added as in AxSpec. Using Theorem
6.6 and general results about composition of timed au-
tomata, we obtain:

Theorem 7.2 For any admissible timed execution �
of SysImpl 0, there is an admissible timed execution �0

of AxSpec0 such that �0jTrains� Gate0 = �jTrains�
Gate0.

8 Concluding Remarks
We have applied a formal method based on timed

automata, invariants, and simulation mappings to
model and verify the Generalized Railroad Crossing.
Here, we extrapolate from this experience and attempt
to evaluate the method for modeling and verifying
other real-time systems. We also describe future work.

Generality. Can the method be used to describe all
acceptable implementations? It seems so. Timed au-
tomata can have an in�nite number of states and both
discrete and continuous variables. Further, they can
express the maximum allowable nondeterminism, use
symbolic parameters to represent system constants,
and represent asynchronous communication. Thus
the method is signi�cantly more general than model
checking approaches, which typically require a �nite
number of states and constant timing parameters.

Readability. Are the formal descriptions easy to
understand? The environment model and the system
implementation model are easy to understand, since
these are naturally modeled as automata. The re-
quirements speci�cations do not look so natural when
expressed as automata; an axiomatic form seems eas-
ier to understand. However, if one starts with an
axiomatic speci�cation, then one has to rewrite the
speci�cation as an automaton. It may be di�cult to
determine that the automaton speci�cation is equiv-
alent to (or implements) the axiomatic speci�cation.

Information. Does the proof yield information
other than just the fact that the implementation is
correct? Does it provide insight into the reasons that
the implementation works? Yes. The invariants and
simulations that require considerable e�ort to produce
yield payo�s by providing very useful documentation.
They express key insights about the behavior of the
implementation. In contrast, model checkers yield no
such byproducts, only an assertion that the implemen-
tation satis�es the desired properties.

Power. Can the method be used to verify all imple-
mentations? Simulation methods (extended beyond
what is described in this paper, to include \back-
ward" as well as \forward" simulations) are theoreti-
cally complete for showing admissible timed trace in-
clusion. They also seem to be powerful in practice,
although they might sometimes bene�t from combi-
nation with other veri�cation methods, such as model

9



checking, process algebra, temporal logic or partial or-
der techniques. Model checking alone is less powerful
in practice, since it only checks whether a subfamily
of solutions satisfy some speci�c properties.

Ease of Carrying out the Proof. How hard is it
to construct a proof using this method? Can typical
engineers learn to do this? Constructing these proofs,
though not di�cult, required signi�cant work. The
hardest parts were getting the details of the models
right and �nding the right invariants and simulation
mapping. This is an art rather than an automatic
procedure. The actual proofs of the invariants and
the simulation were tedious but routine.

Carrying out such a modeling and veri�cation ef-
fort requires the ability to do formal proofs, which
most engineers are not trained to do. In contrast, us-
ing a model checker, an engineer can check automati-
cally whether a given \model" satis�es the properties
of interest. (Model checkers are already being used in
practice by engineers to check the correctness of cer-
tain implementations, e.g., of circuits.) On the other
hand, the proofs developed using the method of this
paper are amenable to mechanical proof checking. So,
automated support can be provided to engineers at-
tempting to develop formal proofs.

Scalability. Does the formalism scale up to handle
larger problems? We don't yet know. Just reasoning
about this relatively simple problem was quite com-
plex. A bigger system will mainly add complexity in
the form of more system components and more ac-
tions, which leads in turn to more invariants, more
components in the simulation mapping, and more
cases in the proofs. But, in contrast to model check-
ing, the blowup should not be exponential. Nonethe-
less, use of the method for larger problems should be
coupled with various methods of decomposing a prob-
lem, so one need not reason about an entire complex
system at once. Additional levels of abstraction and
use of parallel composition should help.

Ease of Change. How easy is it to modify the speci-
�cations and the proofs? Separating the system model
from the environment model and splitting the envi-
ronment model into the individual gate model and
train model makes it easy to change the descriptions.
Should one want to use a more complex train model
(for example, trains move backward as well as for-
ward), one can easily substitute the revised model
for the original. Expressing the required properties
axiomatically and independently makes it easier to
change the requirements.

Changes to the speci�cations and implementations
require, of course, changes to the proofs. If the
changes are fairly small, we expect most of the prior
work to survive, and the stylized form of the proof
provides useful structure for managing the modi�ca-
tions. Here is a place where mechanical aid would be
most helpful { proofs could be rerun quickly to dis-
cover which parts need to be changed.

Future work. Our plans include:

1. Trying this method on larger examples from real-
time process control and time-based communica-
tion. In real-time process control, transportation
problems are especially interesting to us. New
complications are expected to arise when the con-
tinuous quantities of interest include velocity and
acceleration as well as time and position.

2. Developing computer assistance for carrying out
and checking the proofs. We plan to use the
proof systems PVS [18] and Larch [4] to check
the proofs and to assess the utility of mechanical
proof systems for such proofs.

3. Trying to systematize the reasoning about the
correspondence between the axiomatic and oper-
ational speci�cations.

References
[1] R. Cleaveland, J. Parrow, and B. Ste�en. The con-

currency workbench: A semantics-based tool for the

veri�cation of concurrent systems. ACM Trans. Prog.

Lang. and Sys., 15(1):36{72, Jan. 1993.

[2] Oxford Formal Systems (Europe) Ltd. Failure Diver-

gence Re�nement, user manual and tutorial, 1992.

[3] R. Gerber and I. Lee. A proof system for communicat-

ing shared resources. In Proc. 11th IEEE Real-Time

Systems Symp., pages 288{299, 1990.

[4] J. V. Guttag and J. J. Horning. Larch: Languages and

Tools for Formal Speci�cation. Springer-Verlag, 1993.

[5] C. Heitmeyer and R. Je�ords. Formal speci�cation

and veri�cation of real-time systems: A comparison

study. Technical report, NRL, Wash., DC, 1994. In

preparation.

[6] C. Heitmeyer and N. Lynch. The Generalized Rail-

road Crossing: A case study in formal veri�cation of

real-time systems. Technical Report MIT/LCS/TM-

51, Lab. for Comp. Sci., MIT, Cambridge, MA, 1994.

Also Technical Report 7619, NRL, Wash., DC 1994.

[7] C. Heitmeyer and J. McLean. Abstract requirements

speci�cations: A new approach and its application.

IEEE Trans. Softw. Eng., SE-9(5), September 1983.

[8] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw.

A benchmark for comparing di�erent approaches for

specifying and verifying real-time systems. In Proc.,

10th Intern. Workshop on Real-Time Operating Sys-

tems and Software, May, 1993.

[9] C. A. R. Hoare. Communicating Sequential Processes.

Prentice-Hall, Englewood Cli�s, NJ, 1985.

[10] F. Jahanian and A. K. Mok. Safety analysis of timing

properties in real-time systems. IEEE Trans. Softw.
Eng., SE-12(9), September 1986.

[11] S. Kromodimoeljo, W. Pase, M. Saaltink, D. Craigen,

and I. Meisels. A tutorial on EVES. Technical report,

Odyssey Research Associates, Ottawa, Canada, 1993.

10



[12] N. Lynch and H. Attiya. Using mappings to prove

timing properties. Distrib. Comput., 6:121{139, 1992.

[13] N. Lynch and M. Tuttle. An introduction to In-

put/Output automata. CWI-Quarterly, 2(3):219{246,

September 1989. Centrum voor Wiskunde en Infor-

matica, Amsterdam, The Netherlands.

[14] Nancy Lynch. Simulation techniques for proving

properties of real-time systems. In REX Workshop

'93, Lecture Notes in Computer Science, Mook, the

Netherlands, 1994. Springer-Verlag. To appear.

[15] Nancy Lynch and Frits Vaandrager. Forward and

backward simulations { Part II: Timing-based sys-

tems. Submitted for publication.

[16] Nancy Lynch and Frits Vaandrager. Forward and

backward simulations for timing-based systems. In

Proceedings of REX Workshop \Real-Time: Theory in

Practice", volume 600 of Lecture Notes in Computer

Science, pages 397{446, Mook, The Netherlands, June

1991. Springer-Verlag.

[17] Michael Merritt, Francesmary Modugno, and Mark R.

Tuttle. Time constrained automata. In J. C. M.

Baeten and J. F. Goote, editors, CONCUR'91: 2nd

International Conference on Concurrency Theory,
volume 527 of Lecture Notes in Computer Science,

pages 408{423, Amsterdam, The Netherlands, August

1991. Springer-Verlag.

[18] S. Owre, N. Shankar, and J. Rushby. User guide for

the PVS speci�cation and veri�cation system (Draft).

Technical report, Computer Science Lab, SRI Intl.,

Menlo Park, CA, 1993.

[19] N. Shankar. Veri�cation of real-time systems using

PVS. In Proc. Computer Aided Veri�cation (CAV

'93), pages 280{291. Springer-Verlag, 1993.

A The Timed Automaton Model
This section contains the formal de�nitions for the

timed automaton model, taken from [14].

Timed Automata. A timed automaton A con-
sists of a set states(A) of states, a nonempty set
start(A) � states(A) of start states, a set acts(A)
of actions, including a special time-passage action �,
a set steps(A) of steps (transitions), and a mapping

nowA : states(A) ! R
�0. (R�0 denotes the nonneg-

ative reals.) The actions are partitioned into exter-
nal and internal actions, where � is considered ex-
ternal; the visible actions are the non-� external ac-
tions; the visible actions are partitioned into input
and output actions. The set steps(A) is a subset of

states(A)� acts(A)� states(A). We write s ��!A s0 as
shorthand for (s; �; s0) 2 steps(A) and usually write
s:nowA in place of nowA(s). We sometimes suppress
the subscript or argument A.

A timed automaton satis�es �ve axioms: [A1] If s 2

start then s:now = 0. [A2] If s ��! s0 and � 6= � then

s:now = s0:now. [A3] If s
��! s0 then s:now < s0:now.

[A4] If s ��! s00 and s00 ��! s0, then s ��! s0.
The statement of [A5] requires the preliminary def-

inition of a trajectory , which describes restrictions on
the state changes that can occur during time-passage.

Namely, if I is any interval of R�0, then an I-trajectory
is a function w : I ! states, such that w(t):now = t

for all t 2 I, and w(t1)
��!w(t2) for all t1; t2 2 I with

t1 < t2. That is, w assigns, to each time t in interval
I, a state having the given time t as its now compo-
nent. This assignment is done in such a way that time-
passage steps can span between any pair of states in
the range of w. If w is an I-trajectory and I is left-
closed, then let w:fstate be the �rst state of w, while if
I is right-closed, then let w:lstate denote the last state
of w. If I is a closed interval, then an I-trajectory w
is said to span from state s to state s0 if w:fstate = s

and w:lstate = s0. The �nal axiom is: [A5] If s ��! s0

then there exists a trajectory that spans from s to s0.

Timed Executions and Timed Traces A timed
execution fragment is a �nite or in�nite alternating
sequence � = w0�1w1�2w2 � � �, where

1. Each wj is a trajectory and each �j is a non-time-

passage action.

2. If � is a �nite sequence, then it ends with a trajectory.

3. If wj is not the last trajectory in �, then its domain is

a closed interval. If wj is the last trajectory, then its

domain is left-closed (and either right-open or right-

closed).

4. If wj is not the last trajectory in �, then

wj:lstate
�j+1
�! wj+1:fstate.

A timed execution is a timed execution fragment for
which the �rst state of the �rst trajectory, w0, is a
start state. In this paper, we restrict attention to the
admissible timed executions, i.e., those in which the
now values occurring in the states approach 1. We
use the notation atexecs(A) for the set of admissible
timed executions of timed automaton A. A state of a
timed automaton is de�ned to be reachable if it is the
�nal state of the �nal trajectory in some �nite timed
execution of the automaton.

To describe the problems to be solved by timed au-
tomata, we require a de�nition for their visible be-
havior. We use the notion of timed traces, where the
timed trace of any timed execution is just the sequence
of visible events that occur in the timed execution,
paired with their times of occurrence. The admissi-
ble timed traces of the timed automaton are just the
timed traces that arise from all the admissible timed
executions. We use the notation attraces(A) for the set
of admissible timed traces of timed automaton A. If �
is any timed execution, we use the notation ttrace(�)
to denote the timed trace of �.

We de�ne a function time that maps any non-
time-passage event in an execution to the real time
at which it occurs. Namely, let � be any non-time-
passage event. If � occurs in state s, then de�ne
time(�) = s:now.

11



Composition. Let A and B be timed automata sat-
isfying the following compatibility conditions: A and B
have no output actions in common, and no internal ac-
tion of A is an action of B, and vice versa. Then the
composition of A and B, written as A�B, is the timed
automaton de�ned as follows:

� states(A � B) = f(sA; sB) 2 states(A) � states(B) :

sA:nowA = sB:nowBg;

� start(A� B) = start(A)� start(B);

� acts(A�B) = acts(A)[acts(B); an action is external

in A � B exactly if it is external in either A or B; a

visible action of A�B is an output in A�B exactly

if it is an output in either A or B and is an input

otherwise;

� (sA; sB)
�

�!A�B (s0A; s
0

B) exactly if

1. sA
�

�!A s0A if � 2 acts(A), else sA = s0A, and

2. sB
�

�!B s0B if � 2 acts(B), else sB = s0B ;

� (sA; sB):nowA�B = sA:nowA.

Then A � B is a timed automaton. If � is a timed
execution of A � B, �jA and �jB denote the projec-
tions of � on A and B. For instance, �jA is de�ned by
projecting all states in � on the state of A, removing
actions that do not belong to A and collapsing consec-
utive trajectories. We also use the projection notation
for sequences of actions; e.g., �jA denotes the subse-
quence of � consisting of actions of A.

MMT Automata. We use the special case of MMT
automata de�ned in [12, 14]. An MMT automaton
is an I/O automaton [13] together with upper and
lower bounds on time. An I/O automaton A con-
sists of a set states(A) of states, a nonempty set
start(A) � states(A) of start states, a set acts(A) of ac-
tions (partitioned into external and internal actions;
the external actions are further partitioned into in-
put and output actions), a set steps(A) of steps, and
a partition part(A) of the locally controlled (i.e., out-
put and internal) actions into at most countably many
equivalence classes. The set steps(A) is a subset of
states(A)� acts(A)� states(A); an action � is said to
be enabled in a state s provided that there exists a
state s0 such that (s; �; s0) 2 steps(A), i.e., such that

s ��!A s0. A set of actions is said to be enabled in s
provided that at least one action in that set is enabled
in s. The automaton must be input-enabled , which
means that � is enabled in s for every state s and in-
put action �. The �nal component, part, is sometimes
called the task partition. Each class in this partition
groups together actions that are supposed to be part
of the same \task".

An MMT automaton is obtained by augmenting
an I/O automaton with certain upper and lower time
bound information. Let A be an I/O automaton with
only �nitely many partition classes. For each class
C, de�ne lower and upper time bounds, lower(C)
and upper(C), where 0 � lower(C) < 1 and 0 <
upper(C) � 1; that is, the lower bounds cannot be
in�nite and the upper bounds cannot be 0.

A timed execution of an MMT automaton A is
de�ned to be an alternating sequence of the form
s0; (�1; t1); s1; � � �where the �'s are input, output or in-
ternal actions (but not time-passage actions). For each

j, it must be that sj
�j+1�! sj+1. The successive times are

nondecreasing, and are required to satisfy the given
lower and upper bound requirements. Finally, admis-
sibility is required: if the sequence is in�nite, then the
times of actions approach 1.

Each timed execution of an MMT automaton A
gives rise to a timed trace, which is just the subse-
quence of external actions and their associated times.
The admissible timed traces of the MMT automatonA
are just the timed traces that arise from all the timed
executions of A.

It is not hard to transform any MMT automa-
ton A into a naturally-corresponding timed automa-
ton A0. First, the state of the MMT automaton A is
augmented with a now component, plus �rst(C) and
last(C) components for each class of the task parti-
tion. The �rst(C) and last(C) components represent
the earliest and latest time in the future that an ac-
tion in class C is allowed to occur. The time-passage
action � is also added. The �rst and last components
get updated in the natural way by the various steps,
according to the lower and upper bounds speci�ed in
the MMT automaton A. The time-passage action has
explicit preconditions saying that time cannot pass
beyond any of the last(C) values, since these repre-
sent deadlines for the various tasks. Restrictions are
also added on actions in any class C, saying that the
current time now must at least equal �rst(C). The
resulting timed automaton A0 has exactly the same
admissible timed traces as the MMT automaton A.

Invariants and Simulation Mappings. We de-
�ne an invariant of a timed automaton to be any
property that is true of all reachable states.

The de�nition of a simulation mapping is para-
phrased from [16, 15, 14]. We use the notation f [s],
where f is a binary relation, to denote fu : (s; u) 2 fg.
Suppose A and B are timed automata and IA and IB
are invariants of A and B. Then a simulation mapping
from A to B with respect to IA and IB is a relation f
over states(A) and states(B) that satis�es:

1. If u 2 f [s] then u:now = s:now.

2. If s 2 start(A) then f [s]\ start(B) 6= ;.

3. If s
�

�!A s0, s; s0 2 IA, and u 2 f [s] \ IB, then there

exists u0 2 f [s0] such that there is a timed execution

fragment from u to u0 having the same timed visible

actions as the given step.

Note that � is allowed to be the time-passage action
in the third item of this de�nition. The most impor-
tant fact about these simulations is that they imply
admissible timed trace inclusion:

Theorem A.1 If there is a simulation mapping
from timed automaton A to timed automaton B,
with respect to any invariants, then attraces(A) �
attraces(B).

12


